Latest
News
keeping Members updated
Home
Page
welcome to our website
About Us
information about our Club
Contacts
our Officers and Committee
Events Diary
our events for the
months ahead
Event Reports
from the last four months
Member's Cars
a selection of
our active "Sevens"
Joys of being a 7'er
and a few stories
Do you fancy an Austin Seven?
advice on buying a "Seven"
Road Tests
for the most popular "Sevens"
Photo Gallery
of our past activities and
"Sevens" in close up
From the Past
Items from 1920/30s
magazines
Registration Marks
in the UK from 1903
Help at the roadside
fuel and electrical problems
Austin Seven Journal
advice for Austin Agents
& Service Depots
Austin Seven
Handbooks
information for the
new owner
Technical Articles
our members help you
with various tasks
Technical Advice
from old magazines
Data Pages
info on "Sevens"
Parts and Services
sources of spares etc
Quick Tips
a few handy ideas
Other Articles
of interest, not technical
Austin Seven Books
some of the books available
A7CA and FBHVC
CA7C is an active supporter
Links to other Austin
Seven Sites
Visiting Cornwall
if you come our way
Website Policy
on advertisements and links
Every now and then you come across something that makes you stop, look and say “That’s ruddy clever”. Such an occasion happened recently when a member asked me to check out some dipping headlight solenoids.
Many folk regard the original dipping mechanism as unacceptable for modern traffic, and many are discarded during lighting upgrades or 12V conversions. However, when considered in the context of the time, they were a very clever idea. Firstly, as the light pollution was so much lower, people were quite happy with being able to see far enough when travelling at 30 mph. After all, nobody else was going any faster anyway. Secondly, bulb technology was such that twin filament bulbs were far too difficult to make. Thirdly, the power consumed from the battery was reduced, as the offside light was deliberately extinguished on dip beam. Provided your car was first registered before 1936, this is still legal. For cars after 1936 a conversion is required so that both headlights remain on when switched to dipped beam.
On the top of the
solenoid assembly are four terminals and two moving contacts. These moving
contacts are operated so as to make an electrical connection to two fixed
contacts on the bottom side of the insulating plate. The left hand contact
switches the supply to the offside headlight bulb, whilst the right hand one has
a special purpose which will be explained later.
In the
“rest” position, which equates to Main Beam, the dipswitch is open so that no
current flows through the solenoid. A spring on the headlamp reflector
pulls the plunger outwards. The contact arms are lowered under their own spring
pressure and the contacts are closed underneath. Note that should the fuse
blow, the circuit through the dipswitch becomes open circuit and the system
defaults to main beam. The fuse does NOT interrupt current to the offside
lamp.
When the dipswitch is closed, current is allowed to flow through the solenoid. The windings of the solenoid are special, in that they consist of a normal winding to provide the magnetic field to pull on the plunger, which is IN SERIES with a resistance winding.
As the
solenoid begins to operate, the plunger is pulled inward, pivoting the
reflector. At the beginning of the travel, the right hand circuit is still made.
This contact short circuits the series resistance, ensuring that the maximum
current flows through the windings for maximum pull. The windings are only
about 1.4 Ohms, so the current at 6V is pretty high - around 4 Amps. The
windings won’t take that for very long without overheating.
As
the plunger approaches the end of its travel, a small peg pushes the insulating
plate between the contact arms upwards, opening the electrical connections. The
left hand contact opens, disconnecting the feed to the offside headlight.
The right hand contact opens which puts the resistance back in circuit.
This resistance is around 20 Ohms, so that the current is very much reduced, to
less than a third of an amp. Because the plunger is now almost fully home,
very little magnetic force is required to keep it there and the power dissipated
in the winding reduces to a fraction of what it had been during the travel.
So what can go wrong with these clever bits of
mechanical logic?
Firstly, the fuse holders tend to get grubby, which often means that the
headlights are reluctant to dip. Similarly, the contacts on the underside
of the moving arm need to be clean: if the contact is dirty, the resistance will
be in circuit and the solenoid will never pull hard enough to begin its travel.
More
commonly, as the picture shows, the top insulator can be very buckled and
distorted. It is made of a material correctly called Synthetic Resin
Bonded Paper (SRBP), but often known by the trade names Paxolin or Tuffnol.
The snag with this can be seen from the photo. It is hygroscopic,
absorbing lots of water when stored in a damp environment, which makes it swell
and buckle. The arching shape means that this example doesn’t short out
the series resistance, and the pull is feeble.
Do not be tempted to try to force it back:
it is a one way trip. In the case of the solenoid shown, the best remedy
is to modify the contacts so that they still close despite the curve.
Converting 6V solenoids to 12V
These little pieces of period charm can be converted to 12V, but only if the
disconnection of the offside headlight is abandoned. With a pair of single
filament bulbs, the dipping can be effected mechanically.
It’s not
quite as straightforward as putting a resistor in series, (such as for
trafficators). The reason is that with a resistor permanently in series,
not enough current will flow to get the reflector moving; not fitting a resistor
would cause the current limiting resistance to overheat and fail prematurely.
There is a simple solution, and that is to use the offside bulb contacts to switch in an additional resistance only after the movement has been completed. In the circuit shown, an additional 18 Ohm 5 watt wire wound resistor is placed across the bulb contacts on the left hand side. One contact is wired to the terminal usually used for the dipswitch: the other is the new feed from the dipswitch. In the main beam position, the resistor is short circuited and full current flows into the solenoid. Once the dip position is reached, the contacts open, the additional resistor is put in series and the holding current is reduced to approximately what it would have been for 6V.
This article, written by Geoff Hardman, originally appeared in CA7C Seven Focus in July 2010 pp 15-17.